The Grotthuss mechanism (also known as proton jumping) is a model for the process by which an 'excess' proton diffuses through the hydrogen bond network of water molecules or other hydrogen-bonded liquids through the formation and concomitant cleavage of involving neighboring molecules.
In his 1806 publication “Theory of decomposition of liquids by electrical currents”, Theodor Grotthuss proposed a theory of water conductivity. Grotthuss envisioned the electrolytic reaction as a sort of ‘bucket line’ where each oxygen atom simultaneously passes and receives a single hydrogen ion. It was an astonishing theory to propose at the time, since the water molecule was thought to be OH, not H2O, and the existence of ions was not fully understood. On its 200th anniversary, his article was reviewed by Cukierman.
Although Grotthuss was using an incorrect empirical formula of water, his description of the passing of protons through the cooperation of neighboring water molecules proved prescient.
Lemont Kier suggested that proton hopping may be an important mechanism for nerve transduction.
The calculated energetics of the hydronium solvation shells were reported in 2007 and it was suggested that the activation energies of the two proposed mechanisms do not agree with their calculated hydrogen bond strengths, but mechanism 1 might be the better candidate of the two.
By use of conditional and time-dependent radial distribution functions (RDF), it was shown that the hydronium RDF can be decomposed into contributions from two distinct structures, Eigen and Zundel. The first peak in g(r) (the RDF) of the Eigen structure is similar to the equilibrium, standard RDF, only slightly more ordered, while the first peak of the Zundel structure is actually split into two peaks. The actual proton transfer (PT) event was then traced (after synchronizing all PT events so that t=0 is the actual event time), revealing that the hydronium indeed starts from an Eigen state, and quickly transforms into the Zundel state as the proton is being transferred, with the first peak of g(r) splitting into two.
For a number of important gas phase reactions, like the hydration of carbon dioxide, a Grotthuss-like mechanism involving concerted proton hopping over several water molecules at the same time has been shown to describe the reaction kinetics. This Grotthuss-like concerted proton transfer seems to be especially important for atmospheric chemistry reactions, like the hydration of , the hydrolysis of chlorine nitrate and other reactions important for ozone depletion.
+ Electromobility of cations in an electrical field |
Electrical mobility (cm2 s−1 V−1) |
0.519 × 10−3 |
0.762 × 10−3 |
0.763 × 10−3 |
3.62 × 10−3 |
|
|